A Convenient Procedure for the Acidic Activation of Mineral Bentonite: An Environmentally Friendly Method for the Preparation of Bleaching Earths

László Kótai,* István E. Sajó, Emma Jakab, Gábor Keresztury, Éva Pfeifer, László Kocsis,

Katalin Papp, István Gács, József Valyon, and József Lippart Chemical Research Center, Hungarian Academy of Sciences, H-1025, Budapest, Pusztaszeri u. 59-67, Hungary

(Received July 24, 2008; CL-080726; E-mail: kotail@mail.chemres.hu)

Refluxing montmorillonite-containing raw bentonite $((Na,Ca)_{0.33}(Al,Mg)_2Si_4O_{10}(OH)_2)$ in aq HNO₃, then neutralizing it with NH₃ produces NH₄NO₃-containing NH₄-bentonite. The NH₄NO₃ intercalated can be eliminated as a gaseous product (N₂O and H₂O) by heating at 400 °C, and the deammoniation and dehydroxylation process of the preactivated bentonite leads to formation of bleaching earth (H_x(Al,Mg)_{2-y}Si₄O₁₀-(OH)₂).

Acid-activated bentonites (bleaching earths) are widely used absorbents in the food industry.¹ Various methods have been developed for their preparation, mainly by using HCl or H₂SO₄ as activation agent.² These technologies produce large amounts of acidic wastewater which require alkaline neutralization and may be the cause of environmental salt-burdening.³

Based on our previous work,⁴ a new process involving nitric acid preactivation, ammoniacal neutralization and a heat treatment has been developed. Aqueous washing, consequently the acidic wastewater formation, has been eliminated. Mineral bentonite was preactivated in a 20% aq HNO₃ by refluxing for 3 h. The preactivated bentonite formed in this process has no excellent bleaching property,⁵ although the layered structure has already been destroyed during this treatment (Figure 1). The intense XRD reflection corresponding to the basal spacing laminar clay structure ($d_{001} = 1.520$ nm, scan 1) disappeared (scan 2), and only minor changes could be detected after the heat treatment (scan 3). The preactivated sample contains a small amount of residual HNO₃ ($\nu_{NO} = 1380$ cm⁻¹) which, however, is eliminated by the heat-treatment of the activated bentonite

to remove the NH_4NO_3 formed during the ammoniacal treatment. The decomposition temperature of the NH_4NO_3 intercalated in the preactivated sample is $260 \,^{\circ}$ C, which shows the absence of any catalytic effects of the aluminosilicate cage of the preactivated bentonite.

$$NH_4NO_3 = N_2O + 2H_2O \tag{1}$$

Only gaseous N₂O (m/z = 44) and H₂O (m/z = 18) are formed; NO_x gases and NH₃ do not evolve (Figure 2).⁶ The small peak at 100 °C refers to the elimination of the physically adsorbed water.

As the sign of the dehydroxylation/deammoniation processes an extended water/NH₃ elimination step (m/z = 18 (H₂O) and m/z = 17 (NH₃)) has occurred between 300 and 400 °C. A well-defined peak of N₂ (m/z = 28) could be observed at 310 °C (without any NO (m/z = 30) or N₂O (m/z = 44) formation) as a consequence of the decomposition of the adsorbed ammonia. According to these processes, heating at 400 °C improves the bleaching activity. The comparison of the IR spectra of the raw, the preactivated and the heat-treated bentonites shows that the intensity and the position of the bands assigned to M-OH (M = Al, Mg, and Fe) bonds (\approx 1100, \approx 900, and \approx 840 cm⁻¹) of octahedral sites are shifted and decreased. This confirms the role of the dehydroxylation in the final activation step. After the heat treatment of the bentonite no coordinated ammonia peaks could be detected in the IR spectrum. The deammoniation and the dehydroxylation processes liberate the active sites, via partial dealumination as it was observed in the case of zeolites.⁷ Surface area and pore distribution studies confirm the appearance of new active sites. The specific surface areas of the

Figure 1. XRD (Cu K α) of raw (1), HNO₃ preactivated (2) (acidic) and post heat-treated (3) bentonites.

Figure 2. TG-MS of HNO₃-activated and NH₃-treated bentonite sample.

Figure 3. Schematic representation of the bentonite activation procedure.

raw, preactivated and heat-treated samples were 130, 332, and $361 \text{ m}^2/\text{g}$, respectively.^{8,9}

Activation at higher temperatures or longer heating time led to complete dehydroxylation and loss of the bleaching capacity. The two-step activation process including nitric acid activation and subsequent thermal treatment (Figure 3) is a new kind of bentonite activation methods. The structural changes, however, are almost the same as in the case of traditional hydrochloric and sulfuric acid treatments. Similarly to the HCl treatments¹⁰ N_2 adsorption isotherms show the change from H3 to H2 type of hysteresis induced by transformation of the slit-shaped pores into ink-bottle pores. It is the consequence of the destruction not only of the octahedral but the tetrahedral sheet as well, when silica (800 and $470 \,\mathrm{cm}^{-1}$) is formed (which deposited at the mouth of pores producing ink-bottle pore type). Pore distribution measurements show the presence of mesopores between 1.6 and 3.3 nm depending on the type of the starting raw bentonite. The presence of the pores <15 Å could be excluded. Our process using nitric acid activation which is then followed by ammoniacal treatment and heating at 400 °C has proved to be a convenient method to produce highly active bleaching earths. Wastewater formation is eliminated, and the N₂O in the flue gas can be decomposed in a catalytic converter.¹¹ The method is environmentally friendly and produces bleaching earth comparable in quality with the common hydrochloric-acid-activated bleaching earths and superior to the sulfuric acid activated ones.

References and Notes

- 1 M. Ugurlu, I. Kula, Int. J. Food Sci. Technol. 2007, 42, 359.
- 2 H. Babaki, A. Salem, A. Jafarizad, *Mater. Chem. Phys.* 2008, 108, 263.
- 3 T. Z. Fu, *Feijinshukuang* 1991, 23; Z. H. Li, W. Z. Yang, Q. Yansong, H. Y. Meng, Z. H. Qian, *Feijinshukuang* 1993, 15; P. M. Cole, G. F. Lahoud, *Acid activation of local clays including solid–liquid separation*, Report MINTEK-M249D, No. PB89-141006, 48 p.
- 4 L. Kótai, B. Kazinczy, I. Gács, K. Szentmihalyi, A. Keszler, K. Szasz, Ind. Eng. Chem. Res. 2000, 39, 3920.
- 5 Bleaching ability was tested on sunflower seed oil (H. Topallar, *Turk. J. Chem.* **1998**, *22*, 143).
- 6 Peaks with m/z = 28 (N₂) and m/z = 30 (NO) are the fragments of N₂O.
- 7 I. V. Mishin, T. R. Brueva, G. I. Kapustin, V. D. Nissenbaum, H. K. Beyer, *Kinet. Catal.* **1997**, *38*, 384; H. Beyer, J. Papp, D. Kalló, *Acta Chim. Hung.* **1975**, *84*, 7.
- Surface area and pore distribution were determined by Methylene Blue and N₂ adsorption measurements and water thermoporosimetry. J. A. P. Bello, *Rev. Colomb. Quim.* **1997**, 26, 1; E. I. Stepkowska, S. A. Jefferis, *Thermochim. Acta* **1987**, *114*, 179; Y. Sarikaya, H. Ceylan, I. Bozdogan, M. Akinc, *Turk. J. Chem.* **1993**, *17*, 119.
- 9 H_2SO_4 and HCl activation of the same bentonite (without ammoniacal and heat-treatment) gave 262 and $342 \text{ m}^2/\text{g}$ specific surface area, respectively.
- 10 C. Pesquera, F. Gonzalez, I. Benito, C. Blanco, S. Mendioroz, J. Pajares, J. Mater. Chem. 1992, 2, 907.
- 11 S. Zhu, X. Wang, A. Wang, T. Zhang, *Catal. Today* **2008**, *131*, 339.